

2.5GHz, GaAs, 900-1650nm

DATASHEET

Return to the Webpage

The FCAD is a GaAs-based avalanche photodiode with a 50 µm active area, optimized for low dark current and low spectral noise density. It provides high sensitivity with intrinsic detection gain, making it ideal for OTDR and optical sensing applications. The FCAV is available in single-mode (SM), polarization-maintaining (PM), and multimode (MM) fiber-coupled configurations.

Specifications

Electro-Optical Characteristics (T_{op} 23 ± 3°C, unless otherwise specified)

Parameter		Min	Typical	Max	Unit	Test Condition	
Reverse Breakdown Voltage		40	45	55	V	ID = 100	
Temperature Coefficient reverse breakdown voltage			0.1		%/°C		
Dark Current			5		nA	at 90% VBR	
Multiplied Dark Current			0.8		nA	M = 10	
Terminal Capacitance			0.7		Pf	at 90% VBR at f = 1 MHz	
Cut-Off Frequency			2.5		GHz	M = 10	
Quantum	λ = 1310 nm	76	90		%	NA 1	
Efficiency	λ = 1550 nm	65	77		%	M = 1	
Docnoncivity	λ = 1310 nm		0.9		A/W	M = 1, Pin = 1μW	
Responsivity	λ = 1550 nm		0.7		A/ VV	ινι = 1, Ριτι = 1μνν	
Multiplication Factor	λ = 1550 nm		30			IPO = 1.0 μw, VBR-1.2V	
Excess Noise	λ = 1310 nm		0.7			IPO = 1.0 μw, M = 10,	
Factor	λ = 1550 nm		5			f = 35 MHz	
Optical Return Loss		30			dB	SMF	
Spectral Noise Density		0	0.5		pA √Hz	at M = 30, with DC source	

Photodiode Absolute Maximum Ratings

Parameter	Min	Typical	Max	Unit	Condition
Reverse Voltage			55	V	
Forward Current			8	mA	
Reverse Current			0.5	mA	
Input Optical Power			0.3	mW	
Storage Temperature	-25		90	°C	
Storage Humidity			85	% r.H.	
Operating Temperature	-10		80	°C	
Soldering Temperature			200	°C	60 sec
ESD Susceptibility	100			٧	НВМ

Note:

Operating at maximum ratings for a prolonged period will cause damage to the device.

The specifications provided are for general applications with a cost-effective approach. If you need to narrow or expand the tolerance, coverage, limit, or qualifications, please [click this link]:

Operating at maximum operating specs for prolong periods of time will damage the device.

Features

- Dark Current ~ 0.8 nA
- High Quantum Efficiency
- 2.5 GHz Cutoff Frequency
- Ability to Choose Desired Optical Connector
- Ability to Choose Desired Fiber Type
- 50 Micron Active Area

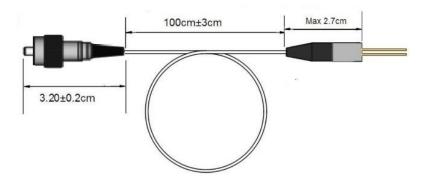
Applications

- Communication
- RF over Fiber (RFoF)
- Optical Time-Domain Reflectometer (OTDR)

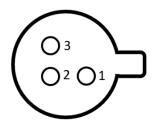
Rev 10/23/25

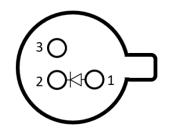
© Photonwares Corporation

sales@photonwares.com

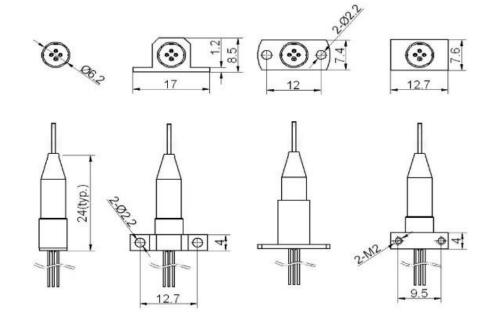


2.5GHz, GaAs, 900-1650nm




Mechanical Dimensions (mm)

^{*}Product dimensions may change without notice. This is sometimes required for non-standard specifications.


PIN Configuration (Bottom View)

Pin#	Function	
1	PD Anode (+)	
2	PD Cathode (-)	
3	Case Ground	

Build Configurations – Mounting Support

© Photonwares Corporation

P +1 781-935-1200

E sales@photonwares.com

w www.agiltron.com

2.5GHz, GaAs, 900-1650nm

Ordering Information

	1	2	С					
Prefix	Wavelength	Speed		Package	Fiber Type	Fiber Cover	Fiber Length	Connector ^[1]
FCAD-	900 - 1620 = 1	2.5GHz = 2		Standard = 1 Special = 0	SM28 = 1 50/125 = 2 PM1550 = 5 Special = 0	0.9mm tube = 3 Bare fiber = 1 Special = 0	0.25m = 1 1.0 m = 3 1.5 m = 5 Special = 0	None = 1 FC/PC = 2 FC/APC = 3 SC/PC = 4 SC/APC = 5 ST/PC = 6 LC/PC = 7 LC/APC = A LC/UPC = U Special = 0

[1]. Regular fiber connector has PER ~22dB. Connector with PER >27 dB is available using special process

Application Notes

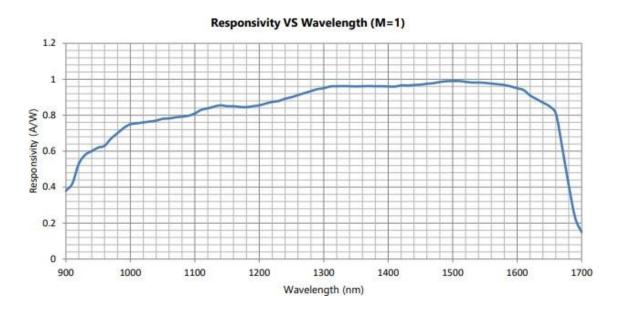
Fiber Core Alignment

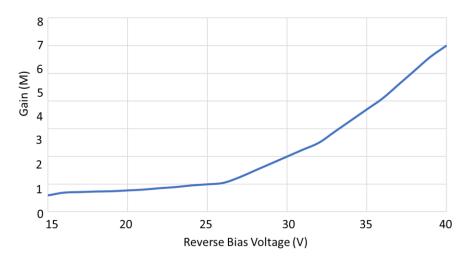
Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

Fiber Cleanliness

Fibers with smaller core diameters (<5 µm) must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power


Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650nm. We produce a special version to increase the how handling by expanding the core side at the fiber ends.


2.5GHz, GaAs, 900-1650nm

Typical Performance Curves (Top 23°C ± 3°C)

Plateau around M = 1

w www.agiltron.com